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a b s t r a c t

In this paper, a radial basis function (RBF) neural network model was developed for estimating tempera-
ture elevation (TE) in multi-stage flash (MSF) desalination processes. The constructed artificial neural
network (ANN) model use as input variables the boiling point temperature (BPT) and salinity. The
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developed RBF neural network was found to be precise in predicting TE from the input variables. The
performance of the ANN model was analyzed by mean squared error (MSE). The developed RBF neural
network was found to be highly precise in predicting TE for the new input data, which are kept unaware of
the trained network showing its applicability to estimate the TE for seawater in MSF desalination plants
better than the empirical correlations, thermodynamic models and MLP neural network.

© 2010 Elsevier B.V. All rights reserved.

oiling point temperature

. Introduction

Desalination is the natural continuous process, which is essen-
ial for the water recycle. Desalination methods are classified into
wo major processes: thermal and non-thermal. Thermal distilla-
ion involves phase changes and it includes multi-stage flash (MSF),
apor-compression (VC), and multi-effect (ME). Non-thermal pro-
esses do not involve phase changes and includes reverse osmosis
RO), electro-dialysis (ED) and ion exchange (IE) [1]. RO plants can
e considered as ideal processes for the seawater desalination from
everal viewpoints.

An ideal system requires least operating resources that are
ecoverable from its product if desired. Both RO and MSF plants
re non-linear processes, which should operate with performance
ptimization under specific constraints. Although the MSF process
s well as the ME process consumes a larger amount of energy than
he RO process, about 18 kWh/m3 for MSF, 15 kWh/m3 for ME, and
kWh/m3 for RO, the reliable performance of the thermal desali-
ation processes MSF and ME made highly competitive against the
O process.

At present, MSF units with large production capacity have the

argest sector in the desalination industries.

MSF plants are used for the production of potable water and pro-
ess water from seawater and brackish water. Saline water is steam
eated and then led into a series of stages where reduced pressure

∗ Tel.: +98 9124319323; fax: +98 2313354089.
E-mail address: ali aminian@ymail.com.

385-8947/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2010.05.060
leads to immediate boiling (flash) without the need to supply addi-
tional heat [2]. A schematic diagram of a MSF desalination process
is shown in Fig. 1.

In addition, MSF desalination plants especially large ones are
often paired with power plants in a cogeneration configuration.
Waste heat from the power plant is used to heat the seawater,
providing cooling for the power plant at the same time.

This reduces the energy needed from one-half to two-thirds,
which drastically alters the economics of the plant, since energy is
by far the largest operating cost of MSF plants [3,4].

Modeling of MSF plants are well established in Refs. [5–12].
The steady and unsteady state models [8–12] can be used
for evaluating the design characteristics of the process and
study the transient behaviors, respectively. In MSF plants, the
incoming seawater passes through the heating stages and is
heated further in the heat recovery sections of each subsequent
stage.

After passing through the last heat recovery section, and before
entering the first stage where flash boiling occurs, the feed water is
further heated in the brine heater using externally supplied steam.
This raises the feed water to its highest temperature (boiling point
temperature or top brine temperature), after which it is passed
through the various stages where flashing takes place.

The seawater BPT is usually calculated by summing up the BPT

of pure water at a given pressure and the TE due to salinity. It is
increases the danger of corrosion and scaling in the plant. Thus, a
proper knowledge of TE can lead to the better optimization and con-
trol of the system and prevent the errors in calculating the design
of process equipments.

dx.doi.org/10.1016/j.cej.2010.05.060
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:ali_aminian@ymail.com
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Fig. 1. An MSF desalination process.

Several investigations are performed to model the TE pre-
ictions of various source of seawater based on the empirical
orrelations [9,14,15]. El-Dessouky and Ettouney [13] developed an
mpirical correlation for calculating TE as a function of BPT and the
alinity in weight percent of seawater. In addition, a detailed model
ncorporating neural networks for physical properties estimation
escribes the MSF desalination process. In previous work [16], for
stimating TE in MSF plants, for each source of experimental data
n MLP neural network model was constructed.

The choice of the input variables is the key to insure complete
escription of the systems, whereas the quality and the number
f the training observations (experimental data) have a critical
mpact on the reliability and the performance of the neural net-

ork. The most important variables that affect the TE estimations
re the BPT and salinity of seawater [16]. Therefore, experimental
ata are required for accurate estimating of TE for given BPT (degree
f Celsius) and salinity (weight percent).

Experimental data are usually not available in the wide range
f operating conditions and therefore should be predicted using
ccurate models. Using experimental data, the TE for seawater was
valuated from such models.

ANN is another type of modeling procedure. ANNs have supe-
iority as compared with other conventional modeling techniques.
he advantage of ANN is that it does not need any knowledge about
he process. ANN, however, is capable of modeling highly complex
nd non-linear systems with large numbers of inputs and outputs.
NNs have been widely used in many fields such as process mod-
ling, control, optimization and prediction [17–19].

In this paper, an RBF neural network model as an adequate pow-
rful tool was developed for predicting TE over a wide range of
perating conditions, which are based on the available experimen-
al data.

. Neural network modeling

.1. RBF neural network background

The objective of this work is to explore the use of a RBF neural
etwork for the prediction of TE in MSF desalination plants. A RBF
onsists of an input layer, hidden layer and output layer with the
ctivation function of the hidden units being radial basis functions
Fig. 2).

Normally, an RBF consists of one hidden layer, and a linear out-
ut layer. One of the most common kinds of radial basis function is
he Gaussian bell-shaped distribution. The response of the hidden

ayer unit is dependent on the distance an input is from the centre
epresented by the radial basis function (Euclidean Distance) [20].
ach radial function has two parameters: a centre and a width. The
idth of the basis function determines the spread of the function

nd how quickly the activation of the hidden node decreases with
Fig. 2. The structure of RBF network.

the input being an increased distance from the centre [21]. The out-
put layer neurons are weighted linear combination of the RBF in
the hidden layer. An RBF network can be modeled by the following
equations:

yj(x) =
n∑
i=1

wji�i(x) + bj (1)

where yj(x) is the output at the jth node in the output layer, n is
the number of hidden nodes, wji is the weight factor from the ith
hidden node to the jth output node, �i(x) is the radial basis activa-
tion function of the hidden layer and bj is the bias parameter of the
jth output node. Some of the common types of RBF are linear func-
tion, Duchon radial cubic, radial quadratic plus cubic and Gaussian
activation function. The last function has the form:

 i(x) = exp

(
−||X − ui||2

2�2
i

)
(2)

where X is the input vector, ui is the center vector of ith hidden node
and� is the width of the basis function. There are two distinct types
of Gaussian RBF architectures. The first type uses the exponential
activation function, so the activation of the unit is a Gaussian bump
as a function of the inputs. The second type of Gaussian RBF archi-
tecture uses the softmax activation function, so the activations of
all the hidden units are normalized to sum to one. This type of net-
work is often called a “normalized RBF” or NRBF network. An NRBF
network with unequal widths and equal heights can be written in
the following form:

 i(x)(softmax) = exp(hi)∑n
i=1exp(hi)

(3)

hi =
(

−
2∑
l=1

(Xl − uil)
2

2�2
i

)
(4)

Again, X is the input vector (Salinity, BPT), uil is the center of the
ith hidden node (i = 1,. . .,12) that is associated with the lth (l = 1,2)
input vector, �i is a common width of the ith hidden node in the
layer and softmax (hi) is the output vector of the ith hidden node.
The radial basis activation function used in this study is the soft-
max activation function [22]. The NRBF neural network developed
during this study consists of an input layer, a hidden layer and an
output layer, which include 2, 12 and 1 node, respectively. At first,

the input data is used to determine the centers and the widths of
the basis functions for each hidden node. The second step includes
the procedure, which is used to find the output layer weights that
minimize the quadratic error between the predicted values and the
target values. Mean square error (the average sum of squares error)
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Table 1
Center and width of the hidden layer nodes and the weights of the hidden-output layer.

Hidden layer parameters
Node (i) 1 2 3 4 5 6 7 8 9 10 11 12
Salinity (center) 0.08 0.36 0.78 0.86 0.25 0.48 0.06 0.37 0.88 0.66 0.29 0.08
BPT (center) 0.17 0.13 0.13 0.46 0.45 0.42 0.51 0.70 0.91 0.79 0.96 0.80
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least squares method to obtain the output weights.
Fig. 3 shows the error between the experimental data and the

neural network predicted temperature elevation. From Fig. 3, it
can be observed that the deviation of neural network predictions

Table 2
A group of data is used for training.

Salinity (%) BPT TE

1.50 70.0 0.183
1.50 80.0 0.196
1.50 90.0 0.209
1.50 100 0.222
3.00 20.0 0.247
3.00 30.0 0.274
3.00 40.0 0.300
5.00 120 0.898
5.00 130 0.945
5.00 140 0.991
5.00 150 1.038
6.00 100 0.989
6.00 110 1.046
6.00 120 1.103
8.00 20.0 0.759
8.00 30.0 0.836
8.00 40.0 0.914
9.50 70.0 1.408
9.50 80.0 1.503
9.50 90.0 1.598
9.50 100 1.693

10.50 130 2.232
10.50 140 2.339
10.50 150 2.446
12.00 100 2.252
Width 0.93 1.13 1.09 1.09 0.58

Hidden – output layers weights
wij 2.5 6.8 −10 8.8 1.2

s defined as

SE = 1
N

N∑
k=1

((TE)exp
k

− (TE)cal
k )

2
(5)

The NRBF neural network modeling and measuring the network
erformance was implemented under the MATLAB environment.

.2. The parameters of the NRBF network

When designing an NRBF network, the most critical task is
ertainly the determination of the parameters of the hidden
ayer. There are a number of centers selection techniques, such
s K-means clustering, linear regression, C-means clustering and
ohonen algorithm. In each of these techniques, the parameters
f the basis functions are determined through the unsupervised
r supervised training algorithms [23]. Means clustering looks for
onvenient clusters of data and places an RBF center in the middle
f each cluster. Genetic algorithm or unsupervised neural network
an be used to find optimal center vectors. Whenever the Gaussian
unction has been selected as a basis function the width has to be
djusted to control the amount of overlapping. The width can be set
o a constant value, calculated using the gradient descent method
r using a heuristic algorithm. After the centers and widths of the
idden layer determined, the next stage involves finding the final

ayer weights that minimize the error between the network’s out-
ut and the target values using supervised learning algorithm. In
he present work, fuzzy C-means clustering was used to determine
he parameters of the basis function. Fuzzy C-means is a data clus-
ering technique wherein each data point belongs to a cluster to
ome degree that is specified by a membership grade. This tech-
ique starts to work with an initial guess for the cluster centers. The

nitial guess for these cluster centers is most likely incorrect. By iter-
tively updating the cluster centers and the membership grades for
ach data point, fuzzy C-means iteratively moves the cluster cen-
ers to the right location within a data set. This iteration is based on

inimizing a cost function that represents the distance from any
iven data point to a cluster center weighted by that data point’s
embership grade [24,25]. In mathematical expression it can be
ritten in the following form:

=
N∑
k=1

n∑
i=1

�2
ik(xk − ui)2,

n∑
i=1

�ik = 1 which 1 ≤ k ≤ N (6)

hich is must be minimized through a non-linear optimization
echnique that is contains the new values of the membership and
he center at each iteration. �ik is the degree of membership of Xk
n the cluster ith. The widths and the centers of the hidden layer
odes associated with each input vector and the weights between
he hidden and output layers are shown in Table 1.
.3. Training result

In order to predict the TE in MSF desalination plants, the
equired input/target data are taken from two sources [14,15] that
re used for the training, validating and testing the NRBF network.
0.80 0.68 0.93 0.96 1.08 0.78 0.86

3.6 −1.3 4.4 27.1 −24 −1.6 −3.8

The BPT and salinity of seawater have been selected as input vari-
ables, while TE (◦C) selected as output variable. Experimental data
sets were chosen with BPT range from 20 to 150 ◦C and salinity
range from 1.5 to 13 wt%. The total number of data was 380, 266
sets of training samples were used to train network and 114 sets of
validating and testing samples were used to show the generaliza-
tion capability of the trained NRBF neural network. Some of these
data are shown in Table 2.

Before training the network with input/target data, the input
and target vectors are required to be normalized. Thus, neural net-
work predict the output with mean and standard deviation of zero
and one, respectively. One of the problems that occur during neural
network training is called over fitting. The error on the training set
is driven to a very small value, but when new data is presented to
the network the error is large. Therefore, Experimental data should
be divided into training, validation and test set. Training, validat-
ing and testing data sets were obtained using specified indices and
partitioned to 70%, 15% and 15% of experimental data, respectively.

Each data set corresponds to one TE for seawater. The developed
NRBF neural network is trained using hybrid learning algorithm to
obtain the center and width of each hidden layer nodes and the
12.00 110 2.377
12.00 120 2.502
13.00 120 2.765
13.00 130 2.902
13.00 140 3.041



A. Aminian / Chemical Engineering Journal 162 (2010) 552–556 555

F

w
R
o
p
t

3

a
v
r
r
p
a
t
t
t
a
u
n
f
1

n
t
p

i
e

T
C

A
C

Table 4
Comparison of maximum error between different methods for data reported in
[14,15].

This work MLP neural
network based
correlations [16]

El-Dessouky and
Ettouney
correlation

0.00095 0.024 3.50
ig. 3. Plot of error between experimental data and the neural network results.

ith the experimental data was very low. The MSE of the optimal
BF network architecture for both training and testing data was
btained near to zero. Note that, the time taken to optimize the
arameters of the hidden layer and train the network using the
raining data set is about 30 s.

. Simulation results

It should be mentioned that the empirical correlations such
s the El-Dessouky and Ettouney correlation [13], could not pro-
ide an adequate predictions of temperature elevation for the wide
ange of operating conditions. However, the proposed NRBF neu-
al network model as an adequate powerful tool can be used to
redict the TE in the range of available experimental data as well
s for some seawater compositions, which are not represented in
he training data set. Table 3 represents the comparison between
he results of this work and El-Dessouky and Ettouney correla-
ion with experimental values obtained using BPT at 60 ◦C, which
re indicated in Refs. [14,15] (these data are excluded and not
sed in the training phase to show the predictability of NRBF
eural network). The time taken to execute the trained network

or estimating the outputs for the new inputs data was less than
s.

Tanvir and Mujtaba [16] used the multi-layer perceptron (MLP)
eural network based correlations (model) to improve the predic-

ions of temperature elevation for seawater in MSF desalination
lants.

The response of the NRBF neural network to the prediction data
ndicates that the NRBF neural network model provides a maximum
rror of 0.00095 compared to the MLP neural network based cor-

able 3
omparison of predicted TE (◦C) and experimental values at BPT = 60 ◦C.

Salinity (wt%) This work Empirical correlationa Experimental

1.5 0.170070 0.136261 0.170
2.5 0.290554 0.315323 0.291
3.0 0.353429 0.389233 0.354
4.0 0.484162 0.548672 0.484
5.0 0.621246 0.724247 0.621
6.5 0.838281 1.019555 0.838
7.0 0.913643 1.126897 0.913
8.0 1.068942 1.355518 1.069
9.5 1.313646 1.734747 1.314

10.5 1.484867 2.012891 1.485
11.5 1.662615 2.312197 1.663
12.5 1.846662 2.633438 1.847
13.0 1.940867 2.802525 1.941

a El-Dessouky and Ettouney correlation: TE = Ax + Bx2 + Cx3. where
= 0.083 + 0.00018 × T + 4 × 10−6 × T2; B = −0.00076 + 0.00009 × T + 5 × 10−7 × T2;
= 0.00015 − 3 × 10−6 × T−3 × 10−8 × T2; T = BPT in ◦C and x = salinity in wt%.
Fig. 4. Comparison between experimental data and predicted with the RBF network.

relations [16] and the empirical correlations [9,13–15]. The results
are summarized in Table 4.

The results obtained by the NRBF neural network model pre-
dicting TE as a function of BPT and salinity for the whole set of
experimental data which are studied in this work is shown in Fig. 4.
From Fig. 4, it is evident that the interpolative capability of the NRBF
neural network is quite believable.

Again, experimental data [14,15] at different salinity and BPT
that are indicated in Fig. 4 are not used in the training phase. As
mentioned before, the results show that the trained NRBF neu-
ral network can predict TE accurately from a set of new source
of seawater. Because of the high operating cost of MSF desalina-
tion process, it is necessary to determine the optimized operating
conditions for these processes. Therefore, in development of pre-
dictive model for desalination plants, application of neural network
is essential due to non-linearity and complexity of interactions
between operating variables.

However, the energy optimization in MSF desalination plants
requires the modeling of MSF processes either from process models,
thermodynamic analysis, empirical correlations or from artificial
intelligence, leading to low-cost production of fresh water.

4. Conclusions

In order to proper operation of MSF desalination plants, an RBF
neural network has been used to predict the temperature elevation
during the MSF process. In an MSF process, top brine temperature
is one of the important parameters, which could be obtained at a
proper TE estimation. Furthermore, the danger of corrosion and the
energy consumption reduced and the design of process equipments
(e.g., heat transfer area, the size of flash chamber) will calculate in
such a way to minimize the total cost of MSF unit.
Experimental data sets were chosen with BPT range from 20 to
150 ◦C and salinity range from 1.5 to 13 wt%. The developed neural
network can be used in an MSF unit for pattern recognition based
on C-mean clustering of input data set. Because of the wide range of
operating conditions studied, the proposed neural network model
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an be used, through an unsupervised pattern classification, for
ccurate prediction of TE as well as for the input variables, which
re kept unaware of the trained neural network.

The proposed method was compared with the MLP neural net-
ork and the empirical correlation, the results showed that the
roposed method was superior for prediction.

After selecting the several network architectures, it was found
hat a network with one hidden layer of twelve neurons is the opti-

um network architecture. The MSE is closely near to zero with
he proposed RBF network. The constructed RBF neural network
as found to be precise in predicting TE for the new input data.

he results demonstrate that this new developed RBF neural net-
ork is successful and can be implemented within an MSF process
odel because of its computational efficiency and accuracy.
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